Fate of pathogens in a simulated bioreduction system for livestock carcasses

Ceri Gwyther

c.l.gwyther@bangor.ac.uk
Bioreduction project is funded by the Welsh Assembly Government and Hybu Cig Cymru. PhD that forms part of this research is funded by the British Pig Executive.
Introduction
What is bioreduction?
Aims and hypothesis
Methods
Results and discussion
Conclusions
Introduction

- Animal By-Products Regulations (2002) prohibited the burning and burial of fallen (dead) stock on farms
- Collection vehicles pose a probable biosecurity risk
- Bioreduction could provide a biosecure method of fallen stock storage prior to ultimate disposal

What is Bioreduction?

Bioreduction is the **aerobic degradation** of animal by-products in a partially sealed vessel containing **water**, where the contents are **heated and aerated**.
What is Bioreduction?

It should **not** be mistaken for anaerobic digestion (*biodigestion*)
An incision into the abdomen releases the microorganisms.

What is Bioreduction?
Aims and Objectives

Primary Aim: To provide evidence to the European Food Safety Authority on the biosecurity of bioreduction

Hypothesis: The conditions within the bioreduction vessels will not encourage the growth of pathogenic microorganisms
Methods: Assessing Biosecurity

2. www.student.britannica.com (15/08/09)
Gwyther et al., 2011. Fate of pathogens in a simulated bioreduction system for livestock carcasses. Submitted for peer review
Methods

Gwyther et al., 2011. Fate of pathogens in a simulated bioreduction system for livestock carcasses. Submitted for peer review.
Carcass constituents

- Lamb Chops
- Sodium Alginate
- Liver
- Blood

82%

Results: Liquor

- **Salmonella spp.** (log_{10} CFU ml^{-1})
- **E. faecalis** (log_{10} CFU ml^{-1})

- ● = Inoculated mini bioreduction vessels
- ▲ = Control mini bioreduction vessels
- - - - = 5 log reduction

Graphs show the reduction in bacterial populations over time (Days).
Results: Liquor

- **E. coli O157** (Log$_{10}$ CFU ml$^{-1}$)
 - **●** = Inoculated mini bioreduction vessels
 - **▲** = Control mini bioreduction vessels
 - **---** = 5 log reduction

- **Campylobacter spp.** (log$_{10}$ CFU ml$^{-1}$)
 - **●** = Inoculated mini bioreduction vessels
 - **▲** = Control mini bioreduction vessels
 - **---** = 5 log reduction
Results: Air

<table>
<thead>
<tr>
<th>Day</th>
<th>Salmonella spp.</th>
<th>E. faecalis</th>
<th>E. coli O157</th>
<th>Campylobacter spp.</th>
<th>Total viable counts*</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>31.9 ± 21.2</td>
<td>15.6 ± 10.9</td>
<td>ND</td>
<td>ND</td>
<td>15.7 ± 6.3</td>
</tr>
<tr>
<td>24</td>
<td>ND</td>
<td>4.4 ± 4.4</td>
<td>ND</td>
<td>ND</td>
<td>147.8 ± 126.7</td>
</tr>
<tr>
<td>57</td>
<td>ND</td>
<td>1.1 ± 1.1</td>
<td>ND</td>
<td>ND</td>
<td>2925.6 ± 2917.2</td>
</tr>
<tr>
<td>85</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>41.3 ± 31.3</td>
</tr>
</tbody>
</table>

ND = None detected

<1000 CFU m³ – uncontaminated air

1000-3000 CFU m³ – moderately contaminated air

>3000 CFU m³ – strongly contaminated air

Results: Air

<table>
<thead>
<tr>
<th>Day</th>
<th>Salmonella spp.</th>
<th>E. faecalis</th>
<th>E. coli O157</th>
<th>Campylobacter spp.</th>
<th>Total viable counts*</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>31.9 ± 21.2</td>
<td>15.6 ± 10.9</td>
<td>ND</td>
<td>ND</td>
<td>15.7 ± 6.3</td>
</tr>
<tr>
<td>24</td>
<td>ND</td>
<td>4.4 ± 4.4</td>
<td>ND</td>
<td>ND</td>
<td>147.8 ± 126.7</td>
</tr>
<tr>
<td>57</td>
<td>ND</td>
<td>1.1 ± 1.1</td>
<td>ND</td>
<td>ND</td>
<td>2925.6 ± 2917.2</td>
</tr>
<tr>
<td>85</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>41.3 ± 31.3</td>
</tr>
</tbody>
</table>

Salmonella spp. not detected after Day 0
Results: Air

<table>
<thead>
<tr>
<th>Day</th>
<th>Salmonella spp.</th>
<th>E. faecalis</th>
<th>E. coli O157</th>
<th>Campylobacter spp.</th>
<th>Total viable counts*</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>31.9 ± 21.2</td>
<td>15.6 ± 10.9</td>
<td>ND</td>
<td>ND</td>
<td>15.7 ± 6.3</td>
</tr>
<tr>
<td>24</td>
<td>ND</td>
<td>4.4 ± 4.4</td>
<td>ND</td>
<td>ND</td>
<td>147.8 ± 126.7</td>
</tr>
<tr>
<td>57</td>
<td>ND</td>
<td>1.1 ± 1.1</td>
<td>ND</td>
<td>ND</td>
<td>2925.6 ± 2917.2</td>
</tr>
<tr>
<td>85</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>41.3 ± 31.3</td>
</tr>
</tbody>
</table>

E. faecalis showed a decrease in numbers over time.
• Bioreduction is efficient at removing pathogens in both liquor and air
• Shows potential as a novel method of storing dead livestock
• Findings are being validated under field conditions
Acknowledgements

Research Technician:
Sarah Chesworth

Supervisors:
Dr. Prysr Williams
Prof. Gareth Edwards-Jones

Prof. Davey Jones
Prof. Peter Golyshin

Bangor University
BPEX
Any Questions?

Ceri Gwyther
c.l.gwyther@bangor.ac.uk